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In order to express the plast ic-strain-induced anisotropy at finite deformation of ductile 

metals, a combined isotropic kinematic hardening model which is a particular form of 

anisotropic hardening, is an appropriate model because of its simple and convenient mathemati- 

cal formulation. This paper examines the applicabil i ty of the model in the computation of 

general straining problems by performing a numerical tension torsion test. The anisotropy 

generated by plastic flow is expressed by back stress. The evolution equation contains form 

invariant isotropic functions of plastic strain rate and back stress and also involves the spin 

associated with induced anisotropy. A numerical fitting procedure allowed us to show that 

circles modeled as combined isotropic-kinematic hardening around the loading nose are in good 

agreement with the experimental yield loci taken from the nonproport ional  straining. The 

measure of checking the applicabil i ty of combined isotropic-kinematic hardening by analyzing 

the total stress history has also been demonstrated by simulating an extrusion process using the 

finite-element method. From the computed results, the angle variations between the principal 

stress direction and the material direction, initially axial, were observed if they are small enough 

in the active plastic deformation region to ensure that the stress point will move along the part 

of the yield locus exhibiting nearly uniform curvature. This indicated that stress and deforma- 

tion can be predicted with combined isotropic-kinematic hardening as long as the loading is not 

reversed. 

Key Words: Plastic Strain Induced Anisotropy, Combined lsotropic Kinematic Hardening, 

Yield Locus, Tension-Forsion,  Back Stress, Least Square Fit, Extrusion 

1. Introduct ion  

Extensive experimental evidence has indicated 

that materials exhibit significant anisotropic har- 

dening induced by plastic deformation. Subse- 

quent yield surfaces, which expand and translate 

in stress space, are also subject to shape changes. 

These are more evident at large deformation. In 

this context, it is important to develop satisfactory 
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elastic-plastic constitutive relations to express the 

influence of plast ic-strain-induced anisotropy at 

finite deformation, since virtually all ductile 

metals exhibit this characteristic. 

The elastic-plastic constitutive relations must 

incorporate the influence of the various compo- 

nents of plastic strain-induced anisotropy, such 

as the sell-equil ibrating internal stresses caused 

by dislocation pi le-up at imperfections, or inclu- 

sions in crystallites or at grain boundaries of 

polycrystalline metals, or with residual-type stres- 

ses generated in the crystallites of a polycrystal- 

line metal due to mismatch plastic strains in the 
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variously oriented grains. These can be modeled 

by the back stress, a second order tensor internal 

variable which represents the kinematic shift of 

the yield surface. Another component of the in- 

duced anisotropy is associated with the differen- 

tial hardening of various slip systems and texture 

evolution which are partly responsible for the 

shape change of the yield surface. Since the 

micromechanisms which generate them are em- 

bedded in the material, the evolution laws for the 

internal variables which are used to model such 

mechanisms must reflect the influence of both 

deformation and rotation. Several workers 

presented different descriptions of distortional 

hardening (Kurtyka and Zyczkowski, 1985, 

1996 ; Mazilu and Meyers, 1985, Gupta and 

Meyers, 1986, 1992 ; Helling and Miller, 1987 : 

Voyiadjis and Foroozesh, 1990), but most of 

them focus on the fitting of the distorted yietd loci 

rather than providing an evolution model for 

numerical prediction of material deformation. In 

this paper, rather than taking account of the 

distortion of yield loci, which is a complete 

description of the geometry, only the expansion 

and the translation of the yield surface were 

considered based on combined isotropic 

-kinematic hardening associated with von Mises 

yield surface, which is much more practical and 

easier for implementation in a numerical scheme. 

Experiments carried out by Helling et al. (1986) 

indicate that for smooth changes of the strain 

vector, the subsequent yield surface maintains an 

effectively circular nose geometry, which can be 

analytically expressed as a combined isotropic 

kinematic hardening with yon Mises yield crite- 

rion in the axial stress - generalized shear stress 

space. In the major deformation regions of most 

metal-forming processes, drastic changes in the 

ratios of the strain rate vector components are not 

likely to occur. This suggests that in many metal 

forming processes, the stress point remains in the 

neighborhood of the nose of the yield surface. 

This simplifies the selection of an accurate con- 

stitutive relation such that stress analysis can be 

associated with combined isotropic-kinematic 

hardening, which can represent expansion and 

translation of the varying yield surface. 

Modeling strain- or deformation-induced 

anisotropy has long been a subject of interest 

among researchers (Loret, 1983: Dafalias, 1983, 

1985a, b : Zbib and Aifantis,.1987, 1988a, b ; 

Paulun and Pecherski, 1985, 1987 ; Van Der 

Giessen et al, 1992, Kuroda, 1995) since Mandel 

(1978) set up a framework for a relevant con- 

stitutive theory. Most of the works have adopted 

the concept of plastic spin appearing in Mandel's 

framework to describe strain induced anisotropy. 

In more recent work, Ning and Aifantis (1997) 

described deformation induced anisotropy in 

polycrystalline solids at both the grain and a 

aggregate levels. They have demonstrated defor- 

mation induced anisotropy by adopting a scale 

- invariant approach and compared their theoreti- 

cal predictions with combined tension-torsion 

data. These works can be regarded to 

phenomenological approaches. Among the con- 

t inuum approaches, an elastic-plastic theory 

which takes account of the spin associated with 

plastic-strain induced anisotropy through a com- 

bined isotropic-kinematic hardening model has 

been proposed by Agah-Tehrani et al. (1987). 

This theory, which is based on the multiplicative 

decomposition of the deformation gradient into a 

plastic followed by an elastic deformation, uti- 

lizes the representation theorems tbr symmetric 

and anti-symmetric second order tensors to pres- 

ent a general isotropic or form-invariant function 

in terms of certain basic functions. ]-'he resulting 

isotropic function of the back stress expresses the 

direct effect of the rate of strain and the influence 

of the rotation associated with the straining of 

lines of material elements which carry the embed- 

ded back stress. Although the importance of all 

the tensorial base functions utilized in the evolu- 

tion law for the back stress is as yet undetermined, 

Lee and Agah Tehrani (1988) and Suh et al. 

(1991) have demonstrated that incorporating the 

base functions in a simplified form representative 

of the influence of such a rotation term is of major 

importance in the stress analysis of nonpropor- 

tional, homogeneous and nonhomogeneous 

straining problems. It was also shown in these 

papers that inclusion of this rotation term 

eliminated the oscillation of the stress-strain 
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curve in shear at large strains, which was errone- 

ously predicted during the simple shearing of a 

rectangular block (Nagtegaal and de ,long, 1982). 

In this paper, the basic theory of the evolution 

model for plastic strain-induced anisotropy is 

briefly demonstrated, and the representation of 

the back stress in the deviatoric stress space is 

presented. The applicability of the combined 

isotropic-kinematic hardening is then examined 

by fitting the yield loci obtained from the tension- 

torsion experimental data provided from Cheng 

and Krempl (1989). Finally, an extrusion prob- 

lem is simulated by the finite-element method in 

order to introduce a means of checking that the 

loading stress remains in the neighborhood of the 

nose of the yield surface during forming. 

2. Structure of Back Stress Evolution 
Involving Plastic-Strain-Induced 

Anisotropy 

As plastic strain increases, the plastic-strain- 

induced anisotropy becomes more significant�9 

The micro mechanisms which generate the plastic- 

strain induced anisotropy are embedded in the 

material and are convected in both translation 

and rotation with the changing deformation (Lee, 

1985). The Bauschinger effect is modeled by 

introducing the back stress a, a second order 

tensor internal variable. Physically the back stress 

a is a residual stress field embedded in the poly- 

crystalline material at the crystallite or crystal- 

lattice level due to deformation of the agglom- 

eration of the anisotropic crystallites and to dis- 

location pile-ups in the crystallites. This back 

stress a affects the magn i tude  of the super- 

imposed applied stress needed to produce addi- 

tional plastic flow and thus produces the Baus- 

chinger effect. A complete analysis of the rotation 

and variation of the back stress a calls for a 

micromechanical analysis of the generation of 

residual stress in the crystallites of the polycrystal- 

line material as the differently oriented single- 

crystal crystallites deform heterogeneously�9 This 

is further complicated by the localized residual 

stresses associated with the blockage of the glide 

of dislocations within the crystallites due to im- 

purity inclusions, particularly in dispersion and 

precipitation hardened alloys (Lee, 1985). 

A general formulation of the evolution equa- 

tions for back stress can be expressed in terms of 

form-invariant tensor functions, the constants 

involved being determined by an experimental 

program of measuring the stress response to pre- 

scribed strain histories or vice versa. Such tests 

would involve a generalization of both the Prager- 

Ziegler strain rate term and the rotation influ- 

ence. The generalized Prager-Ziegler law 

proposed by Fardshisheh and Onat (1974), ex- 

pressed as 

d - - h ( a ,  D p) § (1) 

is equivalent to using the Jaumann derivative 

~, h(cg, D r' ) (2) 

where h can be represented in terms of certain 

basic functions (Agah-Tehrani, 1987) such that 

" p  2 l 2 h(ce, D p) 7]IDP--r]2~P0t@r]3g (a ~ t r ( a  )1) 

p - -  p 2 
+Z]a(czD +13 ~ 3-tr(aDP)l)  +z/a(CD p 

-p  2 2 , 2 + D  a 3 t r ( ~  DP) I )+~$/oI -~W (3) 

where W is an antisymmetric tensor function of 

/ 2  3 D p n p g'P V : the back stress a, the rate of 

plastic deformation D p, and the rate of effective 

plastic strain. The relation between the rate of 

strain and the rate of deformation is defined by 

�9 d c  _ F  T the form g =  dt �9 D �9 F, where g is the rate 

of strain, and F the deformation gradient. The 

back stress is a type of residual stress embedded in 

the deforming material, and the spin term in Eq. 

(1) expresses the contribution of the consequent 

rotation of the back stress to the material deriva- 

tive with respect to fixed axes, in which W is the 

spin, the antisymmetric part of the velocity gradi- 

ent. The form of the isotropic tensor function, h, 

is chosen in such a way that Eq. (3) will be rate 

independent, and therefore h must be linear in D P. 

with linear terms in D ~' has the form 

Vr ~bl(~,DP-Dr'a) @~2(gg2D,~'--DPa 2) 
+ ~b:~ (czDP6~ e aeDPa) (4) 

The coefficients ~b's and ~'s are functions of invar- 
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iant of ce. 

According to Agah-Tehrani el a/.  (1987), 

is expressed in the simple form 

Vr (trN) (c~D ~ DPa) [N (aD p- DP6~) 
§ (o:D p - Dr'a) N] (5) 

1 z where N ~b l l - - (~ce+~ba[2 t r (a ) l - f f ' ] ) .  Equa- 

tion (5) reflects the fact that Vr can be obtained 

from the basic antisymmetric tensor(aD ~' -DPa)  

and an isotropic tensor function of a,. The first 

five terms in Eq. (3) which do not contain Vr are 

selected to incorporate the direct effect of the rate 

of strain and the second the influence of the 

rotation due to the straining of lines of material 

elements which carry the embedded back stress. 

Such rotations can have a significant spin effect 

independently of the spin W. Selection of the first 

term in Eq. (3) to express the direct effect of the 

rate of strain reduces (2) to 

c2=c DP § ~/a-o age (6) 

where c is the classical Prager Ziegler hardening 

modulus. All the first five terms are directly 

related with the loading strain, but it was assumed 

that the first term is dominant. Onat (1982) also 

proposed a similar form for the same purpose and 

it plays a similar role as the Prager-Ziegler 

kinematic hardening model. This is approximate- 

ly verified with the experimental rneasurements as 

shown in part II of this paper. Of course, the 

second, third and remainder terms may also be 

taken into account but this needs more careful 

experimental verification. Moreover, from a 

computational point of view, more terms will lead 

to more complicated manipulations. Therefore a 

simpler form will be preferred if the accuracy of 

the constitutive equation is not significantly de- 

creased. Selecting the first term of Eq. (4) and 

non-dimensionalizing by the magnitude of the 

back stress, 'W will have the form (Lee and Agah 

-Tehrani, 1988) 

~ [aD p DPa] (7) 

& is a non dimensional material dependent 

parameter which controls the contribution of the 

spin due to induced anisotropy. (, will be nonzero 

if a and D p have different principali directions. 

Only nonnegative values of ,& must be: considered 

so that the spin of the eigen triad of the embed- 

ded anisotropy is not larger than the average spin 

of the material particle. Introduction of tile above 

expression for ~/ has removed the anomaly aris- 

ing from the choice of terms added to preserve 

objectivity in finite deformation analysis, such as 

the oscillation of the shear stress with increasing 

shear strain during simple shearing of a rectangu- 

lar block (Suh et al.,  1991). 

3. Approach of Verifying the 
Applicability of Combined Isotropic- 

Kinematic Hardening 

3.1 Circ le - f i t  of  the yield surface  data mea-  

sured from non-proport ional  s tra ining 

Helling et al.  (1986) observed that the devel- 

oping yield surface inflates in the loading direc- 

tion while a flattening of the yield surface is 

taking place in the opposite direction. Figure I 

Fig. 1 Measured yield loci of 70 :30  brass after 
shear prestress. (BI) : No prestress. (B2) : 
v,'3r=167MPa~ 7~=0.024. (B3) : v;3r= 
252MPa, ~=0~74. (B4) : ,/3r=378MPa, 
~?; =0.32. v5• lO ~ strain off'set yield defini- 

tlon. From Helling e/ aL (Helling et al., 
1986). 



576 Yeong Sung Suh 

from Helling et al. (1986) shows the evolving 

yield loci in the axial generalized shear stress 

plane during monotonic shearing of a thin tube in 

torsion. The initial yield locus is well represented 

by the von Mises circle. As the shear strain 

increases, the protuberant nose, which can be 

fitted with the circle, progresses forward ill the 

direction of increasing shear strain with a flatten- 

ing of the opposite side of the yield surface. A 

similar result has been also observed by Cheng 

and Krempl (1991) in their tensile straining of an 

AI/Mg alloy at room temperature. They used thin 

walled tubular specimens made of an A1/Mg 

alloy and conducted tests with a servohydraulic, 

computer controlled, MTS axial torsion testing 

machine. The stress response was obtained for 

non proportional strain paths under simultane- 

ous axial and torsional straining. Figure 2 

includes the proposed strain path in which a 

regular-polygonal strain path is followed by a 

square path. At certain predetermined points as 

shown in Fig. 2, a series of strain increment 

probes was introduced to determine the yield 

locus and consequently ascertain the path depen- 

dent anisotropy due to non-proportional  loading. 

The path between the probing points corresponds 

to a sum of increments of strain several times the 

yield point strain. Since one specimen is used to 

complete the whole strain path, in order to obtain 

a consistent evolution of stress response, a small 

offset strain of 10 -4 was used to determine the 

yield locus so thai appreciable hardening should 

be avoided during the yield stress probing. 

Details of the testing equipment and procedures 

have been described in Cheng and Krempl 

(1991). 

In this work, the evoluting yield surface was to 

be fitted with a circle especially on the nose 

geometry in order to examine whether the yon 

Mises base combined isotropic-kinematic harden- 

ing can be applied to predict non proportional 

straining problems. The experimental yield loci to 

be fitted were provided by Cheng and Krempl 

(1991). 

3.2 Measure of the applicability through 
FEM prediction 

In most metal-forming processes such as roll- 

ing or drawing, commonly a dimension in a 

narrow range of orientations, longitudinal or 

lateral, is being stretched or compressed through- 

out the plastic deformation and thus drastic 

changes of strain vector are not likely to occur. Of 

course, marked changes can be generated by the 

onset of instabilities and localization of the strain. 

The validity of the application of combined 

isotropic kinematic hardening requires that the 

Fig. 2 Strain path for tension-torsion test of a thin 
-walled tube. After 1% of axial prestrain, a 
combination of axial(z) and generalized 
shear(--~7~ -) strains are applied for polygonal 
followed by a square path. From Cheng and 
Krempl (Cheng and Krempl, 1991). 

Fig. 3 Schematic of angle variation between the 
principal stress direction and the material 
direction, initially axial, inside the die during 
steady state axisymmetric extrusion. Upper 
half was shown because of symmetry. 
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stress point traverse a restricted area of the yield 

locus. This is achieved if the orientation of the 

principal stress does not deviate widely from the 

directions of the material elements in the body 

which have carried those stress components. This 

procedure is demonstrated by the finite element 

analysis of axisymmetric extrusion of a rod 

through a frictionless die. Lines directed axially 

in the billet again become axial in the extrudate, 

and their direction inside the die are given by the 

orientation of the corresponding edges of the 

sequentially updated Lagrangian finite elements, 

see Fig. 3. 

4. R e s u l t s  a n d  D i s c u s s i o n  

4.1 Circle-fit to experimental yield data 
The yield loci probed along the strain path 

depicted in Fig. 2 were numerically fitted by 

circles. The measurement of yield surfaces in axial 

-generalized shear stress space generate yield loci 

which exhibit a rounded nose in the direction of 

straining and are flattened in the rear as the 

literature indicates. The compatibility of the cir- 

cle, which corresponds to combined isotropic 

kinematic hardening, was assessed by a circle 

-fitting program which was developed to compute 

the circle through the nose of the yield surface 

using a least-squares fit. The program computes 

the center and radius of a circle from the scattered 

data. The sum of the errors corresponding to each 

data set is 

in m 

E E l = E l ( x ,  a)2+(y~--b)2-RD21 (8) 
i - O  i - 0  

where (a, b) and RD are the center and radius of 

the fitted circle, respectively. The integer m indi- 

cates the selected number of points used. Now it 

is necessary to minimize 

rl/ m 

H ~ E f 2 = Z [ ( x ~ - a ) Z - + ( y ~ - b )  2 RD2] 2 
i = 0  i = 0  

(9) 

The multivariable Newton-Rhapson method 

(See, Press et al. 1986 : Yakowitz and Szidarovs- 

zky, 1986, for example) was used to optimize H. 

This method requires the evaluation of the first 

and second partial derivatives of ]7. The initial 

Fig. 4 Experimental initial yield locus with a 
numerically fitted circle. This corresponds 
to the probing station 1 in Fig. 2. 

Fig. 5 Experimental initial yield locus with a 
numerically-fitted circle at station 2, 1% 
tensile prestrain. 

yield locus was fitted and is shown in Fig. 4, 

which indicates that the locus can be accurately 

described by the von Mises yield criterion. Figure 

5 shows the fitted circle for the yield locus for 

prestraining of I% in the direction of pure tension 

(station 2 in the prescribed strain path, Fig. 2). 

The fitting was based on a ten component data set 

over the nose geometry of the yieh:t locus involv- 

ing a five data set on each side of the axis of the 

prestraining direction. Yield loci with circle-fit at 

Stations 6, 10, 14, 18 are shown in Figs. 6--9. In 

all cases except the rear part of yield locus (rear 

in the sense of opposite the direction of strain- 
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Fig. 6 Experimental initial yield locus with a 

numerically-fitted circle at station 6. 
Fig. 8 Experimental initial yield locus with a 

numerically-fitted circle at station 14. 

Fig. 7 Experimental initial yield locus with a 
numerically fitted circle at station I0. 

ing),  fitted circles which correspond to combined 

isotropic kinematic hardening show quite good 

agreement with the given experimental  yield loci. 

This indicates that if the direction of  the deforma- 

tion is not totally reversed and the loading stress 

remains on the circular  nose geometry, the predic- 

tion of  stress response from arbitrary deforma- 

tions will be very accurate. It is noted that the 

validity of  combined isotropic kinematic harden- 

ing is well demonstrated through this work. 

Now that we have verified that circle is a 

reasonable fit to the von Mises yield surface, it 

would be very informative if  the center and radius 

of  circle are represented as a function of  the back 

stress so that it can be determined with experimen- 

Fig. 9 Experimental initial yield locus with a 
numerically fitted circle at station 18. 

tal measurements. Defining the back stress in 

stress space can differ according to the measure 

adopted. 1t is important  to recognize that the 

center of  yield locus in the axial stress-general-  

ized shear stress space cannot  be identified direct- 

ly as the components  of  the back stress because of  

its deviatoric  nature. The correlat ion formulae 

expressing the von Mises yield circle in the axial 

stress generalized shear space have been derived 

in terms of  the stress and the back stress as the 

fol lowing.  In the tens ion- tors ion  test of  a thin 

walled tube, the Cauchy stress components  are 
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n =  0 (10) 

0 

and the back stress components are 

8 / =  ~ O  ~ 0/~r 
0 - ( a ~ z + a ~ )  

since a is a deviatoric stress. Combined isotro- 

pic-kinematic hardening gives the yield condition 

2 - 2  ( ~ ' - a )  : (or' a) ~ a  =(c~'~j-a,j) : 

(o"lj -- a'Ej) (12) 

which is a hypersphere. Here, 6 is the effective 

stress. In tension-torsion testing, the yield condi- 

tion is reduced to 

( 2 . - 0 - - - 0 - z ~ ) 2 + ( - l o - c ~ , , ) 2 + (  1 o- 

a ~ +  a~)  2 +2  ( r - -  a~) 2=2-  ~ 2 (13) 

Rearranging, this can be expressed as a circle in 

the axial stress-generalized shear stress (o'--, /~r) 

space : 

3 ,2+ 
( ~ - - T a ~ )  ( ~ r - , / 3 a ~ )  2 

2 l ,) = 6 - - 3 ( ~ a ~ + a ~ )  (14) 

Therefore, the center of the yield locus in terms of 

the back stress components in the axial stress 

-generalized shear stress ( c s - f J r )  space is re- 

3 
presented with (2-a~.z, ff3ch~). If the yield locus is 

measured and fitted as a circle, the center is 

determined and thus Cezz and az~ are obtained. 

Once these have been established, the basic infor- 

mation is available to assess the terms needed in 

the evolution equation for the back stress if, the 

most general form of which is given by Eq. (3). 

To do so, extensive and elaborated experiments 

are required. In this work, a parametric evalua- 

tion of Eq. (6), which is a simpler form obtained 

by taking the first and the rotational terms from 

Eq. (3), was carried out and presented separately 

in part ll. 

4.2 Applicability of Combined lsotropic-  
Kinematic Hardening in an Extrusion 
Process  

The finite element code used for the present 

analysis is IFDEPSA (Incremental Finite Defor- 

mation Elastic-Plastic Stress Analyzer) (Sub et 

al., 1991). IFDEPSA uses the updated kagran 

gian method for solving large deformatiion elastic- 

plastic problems. Because of the axial symmetry, 

only half of the workpiece was considered. This 

symmetry condition requires that there will be 

zero shear stress and zero normal velocity along 

the axis. The driving force was applied by a rigid 

frictionless piston with a prescribed velocity. The 

billet was assumed to be snugly fitted into the die 

such that there were no initial stresses. The calcu- 

lations were carried out for a 25% reduction in the 

area. The length of the die was 1.2ro, with ro the 

initial radius of the billet. The die contour was 

assumed to be a smooth curve represented by a 

5th-order polynomial with zero slope and curva- 

ture at bolh ends. Material for this computation 

was 24S-T aluminum, whose initial and satura- 

tion yield stress are respectively 269 MPa and 517 

MPa. Young's modulus was 68,950 MPa and 

Poisson's ratio was 0.33. The mesh consisted of 58 

elements along the axial direction and I 1 elements 

along the radial direction, with progressively 

narrower elements close to the outer surface of the 

billet. The finite element mesh is shown in Fig. 

10. For the analysis, a total of 580 incremental 

steps were utilized such that 40 increments were 

needed for each column of elements to advance 3 

elernent sizes in the axial direction. A detailed 

finite-element formulation for running the pres- 

ent analysis is described in Suh et al. (1991). 

The stresses were obtained with combined 

isotropic-kinematic hardening (fl=0.5) with an 

appropriale contribution of spin associated with 

induced anisotropy (~b --4.0) which was shown 

to generate qualitatively close agreement with the 

experimental stress pattern, in Suh et al. (1991). 

/~ is a material-dependent hardening parameter 

such that isotropic hardening corresponds to /~= 

1, and kinematic hardening to ~ = 0 .  The compu- 

tation was carried out on the centroid of each 

rectangular element. Figure I I shows the statisti- 
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Fig. 10 Undeformed and deformed mesh configurations. The deformed mesh configuration was obtained 
after the piston moved forward by 580 incremental steps with combined isotropic kinematic harden- 
ing ( ~ 0 . 5 ,  ~=  4.0). Due to symmetry, only one half of the billet is illustrated. 

5. Conclusions  

Fig. 11 Statistical distribution of angle variation 
computed under the scheme shown in Fig. 3. 

cal distribution of the variation of the angle 

between the principal stress and material direc- 

tions inside the die, where most of the plastic 

deformation is taking place. Out of 132 elements 

inside the die, almost 60% of the angles are less 

than 15 ~ and even the largest is less than 40 ~ . 

Experimental yield surfaces show that, for such a 

mild change of the stress tensor, the stress point 

will move along the yield locus exhibiting nearly 

uniform curvature. It is conjectured from computa- 

tional results that even with larger still practical 

reduction ratios, the loading stress point will 

reside on the nose circle geometry of the yield 

surface. This allows us to use the combined 

isotropic-kinematic hardening model for conve- 

nient computations in the stress analysis of extru- 

sions of appropriate reduction ratios, or possibly 

of various metal forming processes. 

The applicability of combined isotropic 

kinematic hardening theory was verified by 

showing its conformity with experimental yield 

loci, and an FEM calculation of an extrusion 

process was carried out as a measure of checking 

the applicability of the combined isotropic 

-kinematic hardening model to the general strain- 

ing problem like extrusion process. The results 

from this work are as follows : 

(1) A computer program that fits a circle 

through the nose of the yield locus in generalized 

stress space has been developed to evaluate the 

applicability of combined hardening to the experi- 

mental yield surfaces obtained from the non- 

proportionally prescribed strain path. The center 

and radius of the circle, which correspond to the 

kinematic and isotropic components of harden- 

ing, were obtained by the least-squares fitting 

method. It was found that noses of experimental 

yield loci that have gone through a nonpropor- 

tional straining path are well represented by a 

fitted circle. This indicates that restricted traverses 

of the stress point over the nose of the yield 

surface, exhibiting nearly uniform curvature, sim- 

plifiy the selection of the reliable constitutive 

relation. 

(2) The general isotropic-kinematic hardening 

yield condition which expresses a hypersphere in 

stress space was represented in two dimension 

with center and radius in tension torsion space in 

terms of the back stress. This will contribute to 
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establishing a new hardening model based on 

experimental measurements, since the evolution 

equation of  back stress can be assessed in three 

dimensions from the experimental yield loci. The 

measurement set up has to be carefully designed 

so that unwanted factors such as material instabil- 

ity or measuring error are avoided. This will be 

left as future research. 

(3) A means of checking the applicabili ty of 

combined isotropic-kinematic hardening in anal- 

yzing the total stress history was demonstrated by 

simulating an extrusion process using lhe finite 

-element method. Numerical evaluations of the 

steady-state stress distribution generated during 

axisymmetric extrusion revealed that the variation 

of the angle between the corresponding principal 

stress and material directions in the plastic delk~r- 

mation region is small enough to ensure that the 

stress point will remain in the neighborhood of 

the nose of the yield surface, and that the stress 

analysis can thus be based on combined isotropic 

-kinematic hardening. 

The combined isotropic-kinematic hardening 

model, however, has some limitations in stress 

analyses involving instability, localization or 

cyclic straining where the change of the stress 

vector could be drastic. To analyze those prob- 

lems, a hardening model associated with shape 

changes of the yield surface needs to be devel- 

oped. 
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